Fillwave 10.0.0 - OpenGL40 / OpenGLES30
graphics engine for C++14

Filip Wasil
October 2, 2018

Abstract

Before you start please ensure your graphics card driver supports at
least OpenGL 4.0 and OpenGL ES 3.0 and .Also, your C++ compiler must
support c++14 standard (Ex. g++>6.1 or clang++>3.3). PC Context exam-
ples provided are using GLFW3. Editor provided uses the qt5 QT5 and are
editable according to your needs. Android context will be available soon
using EGL (Java and native). Of course you can use any stub you like (Ex.
freeglut, qt or other).

Contents

1 Introduction 3
1.1 Features 3
1.2 Codestructure 4
1.3 Gettingstarted Lo 4
14 Contextcreation e 5
1.5 Renderingloop 5

2 Digging into API 6
21 Entity 6
2.2 SCONE . . . e e e e e e 7
23 Camerao e e e e e e e 7
24 Renderers e 8
2.5 Programsand Shaders, 8
2.6 Storefunctions. 8
27 Model. e 10

2.71 Directmethods 10
2.72 Builders 11
273 Effects 12
2.8 Particles 13
29 Skybox 15
210 Terrain 15
210.1 Meshterrain. 15
211 Text . . . o o e 16
212 Light o 16
2121 Spotlight 16
2.12.2 Directionallight. 16
2123 Pointlight oo L. 16
213 Logging 16
2.14 Eventsystem 18
2141 Focus e e e 20
2.14.2 Register, unregister and clear functions 20
215 Basing e 21
216 Physics 21
217 Extras 22
218 Renderers i i e e e 24

1 Introduction

1.1 Features

Graphics engine which you are about to use provides extremely, easy,
portable, and uses C++14 modern APL It has all the essential functionalities
that are needed to create a graphics layer for your application:

e Physics buffers for each model.

e Skybox and terrain generation.

o Renderable textures support.

e Spot and directional light support (Point lights will be available soon).
e Ortographic and Perspective projections.

o Easy to use callbacks mechanism.

o Flexible and easy event system.

e Lots of examples and Doxygen documentation.

Probably you will ask how is Fillwave better than other, more extended
engines out there. The answer generally depends on what is your target. With
this engine you can easily build a graphics layer to any game without installing
any large IDE or lots of libraries. Fillwave provides an abstraction layer to
OpenGL API introducing minimum overhead. It does not rely on the OpenGL
context you have, so it can be used with GLFW, Freeglut or even with QT as
weel. The android example (Using native app glue and EGL directly) is also
available.

1.2 Code structure
Files in this project are organized in simple manner:
e ”inc” - headers
e ”src” - sources
e “doc” - documentation
e "ext” - sources of third party libraries (git submodules)
e “cmake” - cmake macros
e “examples” - multiplatform examples
e ”scripts” - building scripts

Engine uses dual namespace design style for modules. Code is splitted into
three namespaces: flw, flw:flf, flw::flc. Core layer uses directly OpenGL driver
API Framework layer uses the core and by design implements a middleware
of thie library. The highest layer can be found under flw namespace. Fillwave
uses "E” as prefix for enum classes and “1” as prefix for Interfaces. Additionally
it introduces few aliases for std templated data types.

"flw::pu < >" - alias of std::unique_ptr
"flw::ps < >" - alias of std::shared_ptr
"flw::pn < >" - std::unique_ptr with empty deleter

1.3 Getting started

The basic application skeleton looks like:

#include <flw/Fillwave.h>
using namespace flw;

int main(int argc, char* argv[]) {
... /* Create OpenGL/OpenGLES context */
auto fillwave = std::make_unique<Engine>(argc, argv); /*
Create Engine instance */
. /¥ create and init scene */
... /* enter rendering loop */
exit (EXIT_SUCCESS);

1.4 Context creation

During the context initialization stage one must provide Fillwave engine a
window (surface to draw on) and use insert functions in your context input
handlers.

void Engine::onEvent(const flf::Event& event)

Every time when there is an event incoming to you context, (Does not
matter if you are using glfw, freegut, QT or other library) and you want Fillwave
to handle it you should insert a proper event into the engine using onEvent
function. Above there is an example using GLFW. The keyboardCallback
function was previously registered as keyboard callback in GLFW.

void ContextGLFW1::keyboardCallback(
GLFWwindow* window
, int key
, int scancode
, int action
, int mods) {

/% Create an event data and fill it */
flw:: f1f: :KeyboardEventData data {
action
, key
, mods
, scancode

};

/* Create an event */
flw::£f1£f: :KeyboardEvent event(data);

/% insert an event */
mGraphicsEngine->onEvent (event);

1.5 Rendering loop

Last step that has to be done in order to use Fillwave is rendering loop
creation. In each iteration a draw, drawLines, or drawPoints function must be
called with the "THow many seconds passed since last draw” parameter. Also

1

there is an extra drawTexture function which can be used if a single texture in
all You want to see. GLFW example of render loop will look like:

void ContextGLFW1::render() {
while (!glfwWindowShouldClose(mWindow)) {
float now = glfwGetTime(Q);
float timeSincelLastFrameInSec = now - mTimeExpired;
mTimeExpired = now;
mGraphicsEngine->draw(timeSinceLastFrameInSec);

/% We were writing to back buffer - make it visible */
glfwSwapBuffers(miWindow) ;

/* evaluate GLFW input events */
glfwPollEvents();

Offscreen drawing is possible using capture functions instead of draw.

void captureFramebufferToFile(const std::string& name);
void captureFramebufferToBuffer(

GLubyte* buffer

, GLint* sizeInBytes

, GLuint format

, GLint bytesPerPixel);

If not sure about the format you want you can just leave the default param-
eters. captureFramebufferToBuffer will use GL_RGBA with 4 bytes per pixel.
This format is also a default one for captureFramebufferToFile.

2 Digging into API

2.1 Entity

pu;jEntity; is a base draw tree node. You can attach any other entities,
models, particle emiters to it. You can move, rotate, and scale each of them.
Fillwave uses 6nly one ownerprinciple and strongly uses unique pointers from
C++14.

auto entity_parent = pu<Entity(Q);
auto entity_child = make_unique<Entity>(Q);

entity_parent->attach(std::move(entity_child));
entity_parent->attach(make_unique<Entity>());

pu;jEntity; can be moved, rotated and scaled. The transformation matrix
will be computed internally. However if one needs to set it directly (for example
if it is computed by physics engine) there is a function provided:

void setTransformation(glm::mat4 transformationMatrix);

Getting a transformation matrix is also possible:

glm::mat4 getTransformation();

2.2 Scene

puScene by design is considered to be the root node of your pujEntity;
tree. It stores its own pujCameraPerspective; (or pujCameraOrtographic),
pu;Skybox; and pujCursor;. It also has an onHide() and onShow() virtual
functions which will be execuded during scene change.

/% Scene */
engine->setCurrentScene(std: :make_unique<Scene>());

/% Camera */
engine->getCurrentScene () ->setCamera(std: :make_unique<CameraOrtographic>());
engine->getCurrentScene () ->setCamera(std: :make_unique<CameraPerspective>());

2.3 Camera

There are two camera to chose from in Fillwave: CameraPerspective and
CameraOrtographic.Providing empty quaternion results will make the camera
look in -Z direction. Example camera creation is listed below:

/* Perspective and ortographic cameras */
engine->getCurrentScene () ->setCamera(make_unique<CameraPerspective>
(glm::vec3(0.0,0.0,6.0), /* position */
glm: :quat(), /* rotation */
glm: :vec3(0.0,1.0,0.0), /* head up direction */
glm::radians(90.0), /* field of view angle */

screenWidth/screenHeight, /* screen ratio */

0.1, /* projection near plane */

1000.0)); /* projection far plane */

engine->getCurrentScene () ->setCamera(make_unique<CameraOrtographic>

(glm::vec3(0.0,0.0,6.0),
glm::quat(), /* rotation */
-10.0f, /* x left culling */
10.0f, /* x right culling */
10.0f, /* y up culling */
-10.0f, /* y down culling */
0.1f, /* z near culling */
1000.0f)); /* z far culling */

2.4 Renderers
In current revision (7.0.0) there are 4 types of renderers:
e RendererPBRP
o RendererFR
e RendererDR (partially done)
e RendererCSPBRP (partially done)

Renderers are per Scene and can be set using Scene::setRenderer() func-
tion. Do not hesitate to create your own one. Its easy and fun (Just implement
IRenderer Interface).

2.5 Programs and Shaders

Default programs can be built using ProgramLoader class using getDefault
and getDefaultBones functions. See the example below:

/% Create loader, and use it to create programs */
loader: :ProgramLoader loader (mEngine);

auto d = loader.getProgram(Eprogram: :basic);

auto a = loader.getProgram(Eprogram: :basicAnimated);

2.6 Store functions

Use Store™ functions to create OpenGL objects which will be also stored by
internal managers, and which will be internally, reloaded and reused if needed.
Use store functions everywhere where possible.

1

/% Store shader using source directly */
mEngine->storeShader<GL_FRAGMENT_SHADER>("fancy_name",

"shader code here");
/% Store shader providing file path */
mEngine->storeShader<GL_FRAGMENT_SHADER>("fillwave_default.frag");

/* Store program */
flc::Program* storeProgram(const std::string& ,
std: :vector<flc: :Shader*>);
/* Store textures */
flc::Texture* storeTexture (const std::string&, const GLuint&);
flc: :Texture2DRenderableDynamic*
storeTextureDynamic (const std::string&
fragmentShaderPath) ;
flc::Texture3D* storeTexture3D(const std::string& path,
const std::string& path,
const std::string& path,
const std::string& path,
const std::string& path,
const std::string& path);
auto storelLightSpot(glm::vec3, glm::vec4, pEntity);
auto storelLightPoint(glm::vec3, glm::vec4, pEntity);
auto storelLightDirectional(glm::vec4, glm::vec3);
auto storeText(std::string,std::string,GLfloat,GLfloat,GLfloat);

36

38

2.7 Model

Fillwave provides different methods to build a model. You can use make
function to create unique_unique or builder classes instead.

2.7.1 Direct methods

/ *
* When the appropriate map paths are available
* together with your model asset file.

% /
auto model = make_unique<Model>(engine, program, "model.obj");

/ *

* When the appropriate map paths are available in your
* file and you want to draw Your custom shape derived
* from f1f::Shape<flc::VertexBasic>

,»/

auto model = make_unique<Model>(engine,
program,
fl1f::Sphere(1.0,10.0,10.0),
diffuseMap,
normalMap,
specularMap,
material);

/ %
* When we want to explicitily provide texture paths
* but stll use the model asset from file.

::/

auto model = make_unique<Model>(engine,
program,
"model.obj",

"relativePathToDiffuseMap",
"relativePathToNormalsMap",
"relativePathToSpecularMap");

/ *
* When we want to use previously created texture
* and material objects.

:‘:/

10

auto model = make_unique<Model>(engine,
program,
"model.obj",
diffuseMapTexture,
normalMapTexture,
specularMapTexture,
material);

2.7.2 Builders

Fillwave also provides two builders classes. You can use BuilderModelEx-
ternalMaps or BuilderModelManual described below.

/* BuilderModelExternalMaps uses custom texture maps */

/* First method */

BuilderModelExternalMaps builderl (engine,
modelPath,
flc: :Program® program,
diffusePath,
normalPath,
specularPath);

auto m = builderl.build(Q);

/* Second method */
BuilderModelExternalMaps builderl(engine);

auto m = builderl.setModelPath(modelPath).
setProgram(program) .
setdiffusePath(diffuseMap).
setNormalMapPath(normalsMap) .
setSpecularMapPath(specularMap) .
setMaterial (material).
buildQ;

/* BuilderModelManual uses custom textures and material *
/
/% First method */

BuilderModelManual builder2 (engine,

11

modelPath,

program,

diffuseMap,

normalsMap,

specularMap,

material);
auto m = builder2.buildQ;

/* Second method */
BuilderModelManual builder2 (engine);

auto m = builder2.setModelPath(modelPath).
setProgram(program) .
setDiffuseMapTexture(diffuseMap).
setNormalMapTexture (normalsMap) .
setSpecularMapTexture(specularMap) .
setMaterial (material).
buildQ;

In each case animations will be also loaded. You can check how many of
them are available, and activate one You are interested in. Default value for
active animation in each model is set to “FILLWAVE_DO_NOT_ANIMATE".

void setActiveAnimation(GLint animationID)
GLint getAnimations();

2.7.3 Effects

Fillwave provides Effects objects which can be added to each Model. You
can use built in effects: Fog, BoostColor, ClockwiseDrawEffect, Painter and
TextureOnly. You can also create Your own one by inheriting from Effect class
and implementing all necessary methods. Remember that during the effect
execution, the models program is already used, so You can call uniformPush
function. Effects uses shared pointer policy. They are shared between models
and callbacks by design.

auto f std::make_shared<Fog>());

auto b std::make_shared<BoostColor(10.0);
auto c std::make_shared<ClockwiseDrawEffect();
auto p std::make_shared<Painter();

12

6

8

auto t std::make_shared<TextureOnly();

model->addEffect(f);

2.8 Particles

Particles system entry in Fillwave is in fact two (but powerfull) classes:
EmiterPointCPU and EmiterPointGPU. The EmiterPointGPU particle emiter
is computed entirely on GPU and uses Texture3D noise as a seed to generate
random positions and velocities. It is slower but gives better robustness factors.
EmiterPointCPU emiter particles are precomputed on CPU. They are faster but
the factors are less robust.

EmiterPointCPU: :EmiterPointCPU(
Engine* engine
, GLfloat emitingSurfaceRadius
, GLfloat robustness
, GLint howMany
, glm::vecd4 color
, 9lm::vec3 acceleration
, glm::vec3 velocity
, glm::vec3 distance
, flc::Texture* texture
, GLfloat lifetimeInSec
, GLfloat pointSize
, GLboolean dephTest
, GLfloat alphaCutOff)

EmiterPointGPU: :EmiterPointGPU(
Engine* engine
, GLfloat emitingSourceRate
, GLuint howMany
, glm::vec4 color
, glm::vec3 acceleration
, glm::vec3 startVelocity
, glm::vec3 robustnessVelocity
, 9lm::vec3 startPosition
, glm::vec3 robustnessPosition
, GLfloat startSize
, GLfloat lifetime
, flc::Texture* texture
, GLenum blendingSource
, GLenum blendingDestination

13

34

36

, GLboolean dephTest
, GLfloat alphaCutOff);

/% Change the blending function if needed */

/% Default blending source is GL_SRC_ALPHA */

/% Default blending destination is GL_ONE_MINUS_SRC_ALPHA*/
void setBlendingFunction (GLenum sourcePixel, GLenum destPixel);

EmiterPointCPU emits particles using a round surface source. You can set
the radius of this surface (emitingSurfaceRadius), and emiting robustness.
Robustness = 0 will make the particles flow perpendicular to the emiting
surface. Parameter dephTest is critical. Using the depth test is slower but it
guarantees that particles will stay visible only when they should be. Giving up
the depth test will make them look much nicer and rendered faster, but they
will be visible always which can make scene look not natural. AlphaCutOff
parameter privides additional feature to discard all pixels with alpha value less
than alphaCutOff.

14

2.9 Skybox

To create a skybox in fillwave You just need to provide texture paths as
shown below.

auto texture=flc::Texture3D*(
engine->storeTexture3D(

"textures_right.png"
, "textures_left.png"
, ''textures_ceil.png"
, "textures_floor.png"
, "textures_front.png"
, "textures_back.png"));

scene->setSkybox (make_unique<Skybox>(engine, texture));

2.10 Terrain

Terrain in Fillwave can be generated using a quad chunks. This method
provides mechanism for terrain generation.

auto fs =
engine->storeShader<GL_FRAGMENT_SHADER>("default.frag");

auto vs = engine->storeShader<GL_VERTEX_SHADER>("default.vert");
auto program = buildProgram(fs + vs);
auto terrain = make_pu<MeshTerrain>(

engine

, program

, 'textures/test.png"

, [1(float x, float y){return foo(x, y)}

, 5

y 6);
sene->attach(std: :move(terrain));

You may have noticed that some code mensions also a voxel terrain feature.
This is an old legacy feature and it will be replaced by more generic solution.
Stay tuned.

2.10.1 Mesh terrain

To create a terrain Mesh you should create a class derived from TerrainCon-
structor class, and implement a calculateHeight method. The method should
take x and z coordinates in the range of (-1,1) in and return Y position.

15

2.11 Text

To create a 2D on screen text using ttf fonts You can use the storeText
function. Texts and HUD uses shared pointers policy. They are shared between
the engine and the user by design.

auto text = engine->storeText("Hello Fillwave",/* content */
"FreeMono",/* font to use */
-0.95, /*left bottom y start (-1,1)%*/
-0.80, /*left bottom x start (-1,1)*/
100.0, /* text size */
ETextEffect::none); /* text effect */

Fillwave will look for the font in the directory relative to Your binary
directory. If it will not find it, it will search the fusr/share/fonts/truetype/free-
font/ directory. Next, it will create a texture and save its metadata. Finally this
texture will be used as an atlas.

212 Light

There are three Possible light types which can be created in Fillwave. These
types are: point, spot and directional lights.
2121 Spotlight

Spot lights have position, intensity (RGBA) and entity parameters. When
the entity is provided, the light will follow the entity whatever happens and
do not consider the position. When there is no entity provided, spot light will
keep its position as set in constructor. Spot light generates perspective shadows
into the scene.

2.12.2 Directional light

Difference between spot and directional lights is a projection type. Direc-
tional lights will have an ortographic projection. It is perfect for light sources
which gives constant size shadowing (Sun for example).

2.12.3 Point light
Not supported.

213 Logging

All objects in Fillwave have a log function which prints most of the objects
data to standard output. There are also predefined macros ready to use:

16

o fLogU - free to use.

e fLogC - checks OpenGL errors.

o fLogl - prints log function information.

. - reserved for internal debug info.

o fLogE - called in case of internal engine error.

o flogF - just like fLogE but also calls abort(). It indicates blocking errors
like: ”Shaders not found”. If such error occurs, and the reason is not
trivial then it needs further investigation by the author. Do not hesitate
to contact me in such case.

To print a debug info in a certain source file You should define a module name
and debug flags with macro FLOGINIT. Examples below:

#define FLOGINIT_DEFAULT()

#define FLOGINIT_NONEQ)

#define FLOGINIT_MASK(FERROR | FFATAL | FDEBUG | FDEBUG | FUSER)

#define FLOGINIT("My module", FERROR | FFATAL | FDEBUG | FDEBUG
| FUSER)

17

2.14 Event system
There are two basic types of callback functions:
e hierarchy callbacks
e private callbacks

Difference between the hierarchy and private is that hierarchy callback
executes synchronously just before the draw when the scene is drawn. As
opposite, the private one is called asynchronously when the particular event
is introduced into the engine (Ex. Mouse button click, or Key press). Most
commonly used private callbacks are TimedCallback classes:

TimedCallback(GLfloat timeToFinish

, EasingFunction easing = eEasing::None);
TimedScaleCallback(

Moveable* entity

, glm::vec3 normalizedScaleVec

, GLfloat lifetime

, std::function<float(float)> easing);

TimedRotateCallback(
Moveable* entity
, glm::vec3 axis
, GLfloat angle
, GLfloat lifeTime
, std::function<float(float)> easing);

TimedMoveCallback(
Moveable* entity
, glm::vec3 endPosition
, GLfloat lifeTime
, std::function<float(float)> easing);

pu<Entity> entity = make_pu<Entity>(Q);

entity->registerHierarchyCallback(
make_unique<TimedMoveCallback>(
entity.get(Q)
, glm::vec3(0.0£,0.0f,1.0f)
, 10.0);

TimedCallback by itself stands only for a time delay. TimedScaleCall-
back, TimedRotateCallback, and TimedMoveCallback on the other hand can
be used to modify the model scale/position/rotation in time with current eas-

18

ing described by std::function EasingFunction. Default easing for all of the
callbacks is LinearInterpolation.

19

2.14.1 Focus

Focus functionality and hierarchy callbacks were introduced to enable exe-
cuting particular callbacks in particular entity without iterating over the whole
scene tree. To set an entity which will receive a callback from chosen input
Engine::attachCallback function should be used.

/* Second parameter means that the IFocusable interface will be
notified to engine so that it will be removed after during
model destruction */

engine->attachCallback(

make_unique<AnimationKeyboardCallback>(beast.get(),
EEventType: :eKey),
beast.get());

To attach/detach an item callback to/from an entity:

void Entity::attachHierarchyCallback(Callback* c);

2.14.2 Register, unregister and clear functions

To register/unregister a callback in Fillwave use following functions:

void Entity::attachHandler(std::function<void(const Event&)>&&
e, EEventType t)
void detachHandlers();

20

215 Easing

Handlers can be used to modify model transformation (scale, rotation and
position) in time with particular easing. You can choose one of following
easings define by EasingFunction:

easelnSineg exseOutSine easeinlutSine easeinfuad easeDuruad easenOutQuad
saseinfublc easelurCublc easelnDutCublc easeinQuan easelutQuan easelnDutQuarnt
easelnQuing easeOutQuint easeinOurQuint easainExpo easelutExpo egseinOutExpo
S S _Jr S
easelnCire easeunCing gaseinOutCine easeinBack easelutBack edeinOutBack
easeinElastic easeDutElastic easelnDutElastic extalnBounce easeQutBounce easelinDutBounce

Y Y A VAV A

2.16 Physics

To synchronize Your graphics with physics engine just use the setTrans-
formation function which is available for each entity. it overwrites all other
transformations for a model.

void Entity::setTransformation(glm::mat4 modelMatrix)

If You have a light attached to Your model, the light will be moved to-
gether with its entity. However, only translation will be updated. If You want
the light to keep the same rotation as its entity, You should use updateParen-
tRotation function explicitily.

void Entity::updateParentRotation(glm::quat rotationQuaternion)

There is a PhysicsMeshBuffer defined. It can be used by physics engine
to generate a collision object from a mesh polygons. Example usage of this

21

buffer can be found in Fillwave car racing demo - Waveracer. To get physics
buffer from asset file use:

PhysicsMeshBuffer Engine::getPhysicalMeshBuffer(const
std: :string& shapePath)

2.17 Extras

To change the background color use:

void Engine::configBackgroundColor (glm::vec3 color);

To apply the time factor to in Fillwave engine use:

void Engine::configTime(GLfloat timeFactor); /* 1.0f as default
-.':/

To get the current executable directory use:

std: :string Engine::getExecutablePath()

To set/reset reset file logging use:

void Engine::configFileLogging(std::string fileName = "");

empty or not valid file name will disable the file logging.

22

There are few texture generators built-in in Fillwave. To use them just pass
one of the patterns as a texture path in Model constructor or storeTexture
function:

/* [R]_[G]_[B].color - for color texture */
/* [R]_[G]_[B].checkboard - for color checkboard texture */
/* "" - Black texture */

pModel model = buildModel (engine,
programDefault,
"model.obj",
"255_0_0.checkboard", /* Red checkboard diffuse texture */
"", /* black normal map */
"255_255_255.color"); /* white specular map */

Debugger related API is provided to enable simple debugging of depth
maps from each spot light, and to enable viewing the pickable objects if there
are any of them registered in the scene. debugger can be configured using one
of the following enum constants. toggleState is a special value which will just
iterate over the possible debugger configurations.

enum class EDebuggerState {
lightsSpot,
lightsSpotColor,
lightsSpotDepth,
lightsPoint,
lightsPointDepth,
lightsPointColor,
pickingMap,
off,
toggleState

s

void Engine::configureDebugger (EDebuggerState state);

23

2.18 Renderers

IRenderer interface class is used when one needs custom renerpass. This is
the powerfull feature providing flexibility. The simplest renderer example
RendererFR. The are others but all work in following way: Scene, when being

)

drawn call the IRenderer::update, giving itself as a parameter.

/*! \class CustomRenderer
* \brief Base for all renderers.

::/

class CustomRenderer {
public:

CustomRenderer();

virtual “CustomRenderer();

/* Add renderable item to your container */
void update(IRenderable* renderable) override;

/* Iterate over your container passing and perform the draw on

each of them */
void draw(ICamera& camera) override;

/* Reset the renderers state */
void reset(GLuint width, GLuint height) override;

/* Clear the container */
void clear() override;
private:
/% Container which will keep your renderable elements
std: :vector<IRenderable*> mContainer;

};
} /¥ £1f */
} /% flw ¥/

:':/

24

	Introduction
	Features
	Code structure
	Getting started
	Context creation
	Rendering loop

	Digging into API
	Entity
	Scene
	Camera
	Renderers
	Programs and Shaders
	Store functions
	Model
	Direct methods
	Builders
	Effects

	Particles
	Skybox
	Terrain
	Mesh terrain

	Text
	Light
	Spot light
	Directional light
	Point light

	Logging
	Event system
	Focus
	Register, unregister and clear functions

	Easing
	Physics
	Extras
	Renderers

